

Published on Web 09/29/2009

## Heterolytic Cleavage of Hydrogen Molecule by Rhodium Thiolate Complexes That Catalyze Chemoselective Hydrogenation of Imines under Ambient Conditions

Yoshiyuki Misumi, Hidetake Seino,\* and Yasushi Mizobe\*

Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan

Received July 14, 2009; E-mail: ymizobe@iis.u-tokyo.ac.jp; seino@iis.u-tokyo.ac.jp

Heterolytic activation of dihydrogen is a key step in catalytic hydrogenation of polar bonds and hydrogen metabolism mediated by hydrogenases. Many transition-metal complexes, especially electron-poor ones, are known to be capable of cleaving H<sub>2</sub> generally in the manner that H<sup>+</sup> is split off from the highly acidic  $H_2$  ligand to leave  $H^-$  on the metal center.<sup>1</sup> In this conversion, the proton is accepted by an external Lewis base or more efficiently by an internal ancillary ligand, as is typically observed in metal-ligand bifunctional catalysts represented by organoamide complexes.<sup>2</sup> Anionic S-donor ligands, RS<sup>-</sup> and S<sup>2-</sup>, are also expected to become internal proton acceptors, and some mechanisms proposed for the function of [NiFe]-hydrogenases postulate proton transfer from the coordinated H<sub>2</sub> to the Ni-bound terminal S(Cys) moiety.<sup>3</sup> However, such reactions proceeding on thiolate complexes are uncommon.<sup>4-6</sup> There are only a few cases that clearly confirm the formation of M(H)-S(H)R from M-SR with  $H_2^5$  and scarce applications to catalysis.<sup>6</sup>

We have been engaging in studies involving activation of small molecules by transition-metal thiolate complexes.<sup>7</sup> We herein report that the bis(thiolate)Rh(III) complex having a tris(3,5-dimethylpyrazolyl)borate (Tp<sup>Me2</sup>) coligand, [Tp<sup>Me2</sup>Rh(SPh)<sub>2</sub>(MeCN)] (1),<sup>7b</sup> reacts reversibly with H<sub>2</sub> to form the hydridothiolato complex [Tp<sup>Me2</sup>RhH(SPh)(MeCN)] (2) and PhSH, as shown in Scheme 1. On the basis of this heterolysis of H<sub>2</sub>, a hydrogenation catalyst that operates under ambient temperature and pressure with high chemoselectivity toward imines has been developed.

## Scheme 1



Treatment of a 10 mM solution of **1** in  $C_6D_6$  with 1 atm  $H_2$  at 20 °C for 2 h gave an equilibrium mixture containing **1**, **2**, and PhSH in a 1:10:10 ratio. When this mixture was set under a  $N_2$  atmosphere, **1** was slowly regenerated. The <sup>1</sup>H NMR spectrum of **2** showed a doublet at  $\delta - 13.80$  ( $J_{RhH} = 11.6$  Hz) due to the hydrido ligand and 10 singlets corresponding to the three inequivalent pyrazolyl groups (two methyls and one ring proton for each) and MeCN. Although we previously found **2** in the reaction of  $[Tp^{Me2}Rh(C_8H_{14})(MeCN)]$  with 1 equiv of PhSH, its isolation was hampered by simultaneous production of **1** ( $1/2 \approx 1:2$ ).<sup>7e</sup> Here, addition of hexane to an equilibrium mixture prepared from **1** under a H<sub>2</sub> atmosphere gave yellow crystals of pure **2**, with which the structure was fully determined by X-ray crystallography (see the Supporting Information).

As reversible heterolysis of H<sub>2</sub> molecule at the Rh-S bond in 1 was disclosed, catalytic hydrogenation was examined to probe the reactivity of the resulting hydrogen atoms. As shown in Table 1, 1 was found to be effective for the hydrogenation of styrene and N-benzylideneaniline under 1 atm H<sub>2</sub> with low to moderate activity at 20-50 °C (entries 1-4). Although higher activity was expected toward the more polarized C=O bond, benzaldehyde and acetophenone were not hydrogenated under these conditions. Isolated 2 showed slightly higher activity than 1 toward styrene, implying that the active species in C=C reduction is close to 2 (entry 5). However, conversion of N-benzylideneaniline was much deteriorated when 2 alone was used, and therefore, not only the Rh-H but also the S-H hydrogen are essential for hydrogenating the C=N bond (entry 6). The activity of the diiodo complex [Tp<sup>Me2</sup>RhI<sub>2</sub>(MeCN)] (**3**) toward this substrate was also poor (entry 7), but the Se analogue of 1, [Tp<sup>Me2</sup>Rh(SePh)<sub>2</sub>(MeCN)] (4),<sup>7c</sup> was found to be much more active than 1, even at 20 °C (entry 8). Whereas 3 remained almost intact under a H<sub>2</sub> atmosphere at 50 °C, 4 formed the hydrido complex analogously to 1. These results indicate that catalytic activity for the hydrogenation of C=N bonds sharply depends on the ability to heterolyze H<sub>2</sub> molecules and that this is strongly affected by ligating elements.

**Table 1.** Hydrogenation of PhCH=Z Catalyzed by  $[Tp^{Me2}RhX^1X^2(MeCN)]^a$ 

| entry    | catalyst (X1; X2)                                   | Z      | temp (°C) | time (h) | yield (%) <sup>b</sup> |
|----------|-----------------------------------------------------|--------|-----------|----------|------------------------|
| 1        | 1 (SPh; SPh)                                        | $CH_2$ | 20        | 20       | 16                     |
| 2        | 1 (SPh; SPh)                                        | $CH_2$ | 50        | 10       | 72                     |
| 3        | 1 (SPh; SPh)                                        | NPh    | 20        | 20       | 21                     |
| 4        | 1 (SPh; SPh)                                        | NPh    | 50        | 10       | 63                     |
| 5        | 2 (H; SPh)                                          | $CH_2$ | 50        | 10       | 86                     |
| 6        | 2 (H; SPh)                                          | NPh    | 50        | 10       | 18                     |
| 7        | 3 (I; I)                                            | NPh    | 50        | 10       | 27                     |
| 8        | 4 (SePh; SePh)                                      | NPh    | 20        | 6        | 99                     |
| 9        | <b>5</b> $(o-S_2C_6H_4)$                            | NPh    | 20        | 1        | 98                     |
| $10^{c}$ | 5 (o-S <sub>2</sub> C <sub>6</sub> H <sub>4</sub> ) | NPh    | 20        | 2        | 48                     |

<sup>*a*</sup> Conditions: substrate (1.00 mmol), catalyst (0.01 mmol), THF (5 mL), H<sub>2</sub> (1 atm). <sup>*b*</sup> Yields of ethylbenzene and *N*-benzylaniline were determined by GLC analyses. The sum of the yields of product and remaining substrate was no less than 98% in each reaction. <sup>*c*</sup> Conducted in benzene (5 mL).

To improve the catalytic efficiency, the benzenedithiolato complex [Tp<sup>Me2</sup>Rh(o-S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)(MeCN)] (**5**) was newly synthesized according to Scheme 2. The active intermediate generated from **5** may contain both RhH and SH moieties within the same molecule. As expected, **5** achieved much more rapid hydrogenation of *N*-benzylideneaniline at 20 °C than the other complexes mentioned above (Table 1, entry 9). Moreover, it was found that reduction of the C=C bond is suppressed and inertness toward the C=O bond is still preserved, as shown in Table 2. Thus, the C=N bonds in various aldimines are efficiently hydrogenated under ambient

temperature and pressure with coexisting C=C or C=O functions unaffected, with the exception that partial reduction occurred for the C=C bond conjugated with the C=N group (entry 3). On behalf of inertness to C=O bonds, reductive amination could be performed by mixing aldehyde and primary amine directly under hydrogenation conditions (entry 5). Conversion of a ternary iminium salt into a tertiary ammonium salt also took place quantitatively (entry 6).

## Scheme 2

[Tp<sup>Me2</sup>Rh(C<sub>8</sub>H<sub>14</sub>)(MeCN)]



Table 2. Hydrogenation of Various Imines Catalyzed by 5<sup>a</sup>



<sup>*a*</sup> Conditions: substrate (1.00 mmol), **5** (0.01 mmol), THF (5 mL),  $H_2$  (1 atm), 20 °C, 1 h. <sup>*b*</sup> NMR determination (entries 1–3, 6) or isolated yields (entries 4 and 5). <sup>*c*</sup> Octanal (1.01 mmol) was added to a solution of aniline (1.02 mmol) and **5** (0.020 mmol) under a  $H_2$  atmosphere.

In contrast to 1, no observable change in 5 occurred under 1 atm H<sub>2</sub>. However, addition of NEt<sub>3</sub> to its THF solution caused rapid formation of an off-white solid, which was characterized as [Et<sub>3</sub>NH][Tp<sup>Me2</sup>RhH(o-S<sub>2</sub>C<sub>6</sub>H<sub>4</sub>)] ([Et<sub>3</sub>NH]6). The hydrido ligand in  $6^-$  exhibited an <sup>1</sup>H signal at -18.90 (d,  $J_{RhH} = 14.8$  Hz) and an IR absorption for  $\nu(Rh-H)$  at 2104 cm<sup>-1</sup>. Because of the appearance of the  $\nu(N-H)$  band at 2670 cm<sup>-1</sup> characteristic of tertiary ammonium cation,  $6^-$  was identified as a monoanion. From this result, it is plausible that  $\{Tp^{Me2}Rh(o-S_2C_6H_4)\}$  and  $H_2$  form an adduct that may shift H<sup>+</sup> to the imine and also that the resulting  $6^-$  transfers H<sup>-</sup> to this iminium cation. This mechanism, namely, ionic hydrogenation,<sup>8</sup> is supported by the decrease in the catalytic rate in the less-polar benzene medium (Table 1, entry 10).<sup>9</sup> The major catalytic cycle of imine reduction by 1 is also considered to be similar, because the anionic hydrido complex analogous to  $6^$ can be prepared from 1 under the same conditions. Such a reaction pathway mediated by formation of an active iminium ion has been proposed in some other catalytic systems.<sup>10</sup> The preferential addition of H<sub>2</sub> to the C=N bond over the C=O bond as observed here is uncommon.<sup>11</sup> Presumably, the H<sub>2</sub> adduct of the Rh species is not acidic enough to protonate O atom, and the nucleophilicity of  $6^$ is not strong enough to reduce the nonactivated C=O bond. On the other hand, hydrogenation of acetophenone by a Ru thiolate complex has been proposed to proceed via the concerted transfer of hydride and proton to the C=O bond,<sup>6</sup> as is widely accepted for bifunctional molecular catalysts.<sup>2</sup>

It is still unclear whether deprotonation from the H<sub>2</sub> adducts of Rh thiolate complexes occurs directly at the stage of  $\eta^2$ -H<sub>2</sub> or after formation of Rh(H)-S(H) species. However, their catalytic functions may have some relevance to [Fe]-hydrogenases, which generate a proton and transfer a hydride to an organic molecule at a monoiron site bound to a cysteine residue.<sup>12,13</sup>

Acknowledgment. This work was supported by Grants-in-Aid for Scientific Research [18065005 on Priority Area "Chemistry of Concerto Catalysis" and 21350033 (B)] from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

**Supporting Information Available:** Experimental details and X-ray analysis data for **2** (CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

## References

- (a) Brothers, P. J. Prog. Inorg. Chem. 1981, 28, 1. (b) Morris, R. H. Can. J. Chem. 1996, 74, 1907. (c) Kubas, G. J. Adv. Inorg. Chem. 2004, 56, 127.
- Recent reviews: (a) Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed. 2001, 40, 40. (b) Clapham, S. E.; Hadzovic, A.; Morris, R. H. Coord. Chem. Rev. 2004, 248, 2201. (c) Ito, M.; Ikariya, T. Chem. Commun. 2007, 5134.
- (3) Recent reviews: (a) Volbeda, A.; Fontecilla-Camps, J. C. Dalton Trans. 2003, 4030. (b) De Lacey, A. L.; Fernández, V. M.; Rousset, M.; Cammack, R. Chem. Rev. 2007, 107, 4304. (c) Siegbahn, P. E. M.; Tye, J. W.; Hall, M. B. Chem. Rev. 2007, 107, 4414. (d) Tard, C.; Pickett, C. J. Chem. Rev. 2009, 109, 2245. (e) Gloaguen, F.; Rauchfuss, T. B. Chem. Soc. Rev. 2009, 38, 100.
- (4) (a) Sellmann, D.; Käppler, J.; Moll, M. J. Am. Chem. Soc. 1993, 115, 1830.
  (b) Jessop, P. G.; Morris, R. H. Inorg. Chem. 1993, 32, 2236. (c) Sellmann, D.; Gottschalk-Gaudig, T.; Heinemann, F. W. Inorg. Chem. 1998, 37, 3982.
  (d) Sellmann, D.; Fürsattel, A. Angew. Chem., Int. Ed. 1999, 38, 2023. (e) Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem., Int. Ed. 2000, 39, 561.
  (f) Sellmann, D.; Prakash, R.; Heinemann, F. W.; Moll, M.; Klimowicz, M. Angew. Chem., Int. Ed. 2004, 39, 561.
  (g) Matsumot, Chem., Int. Ed. 2004, 43, 1877. (g) Matsumoto, T.; Nakaya, Y.; Tatsumi, K. Angew. Chem., Int. Ed. 2008, 47, 1913.
- (5) (a) Schlaf, M.; Lough, A. J.; Morris, R. H. Organometallics 1996, 15, 4423.
  (b) Sellmann, D.; Rackelmann, G. H.; Heinemann, F. W. Chem.-Eur. J. 1997, 3, 2071. (c) Ohki, Y.; Sakamoto, M.; Tatsumi, K. J. Am. Chem. Soc. 2008, 130, 11610.
- (6) Ohki, Y.; Takikawa, Y.; Sadohara, H.; Kesenheimer, C.; Engendahl, B.; Kapatina, E.; Tatsumi, K. Chem.-Asian J. 2008, 3, 1625.
- (7) (a) Takagi, F.; Seino, H.; Hidai, M.; Mizobe, Y. Organometallics 2003, 22, 1065. (b) Seino, H.; Yoshikawa, T.; Hidai, M.; Mizobe, Y. Dalton Trans. 2004, 3593. (c) Nagao, S.; Seino, H.; Hidai, M.; Mizobe, Y. Dalton Trans. 2005, 3166. (d) Kajitani, H.; Seino, H.; Mizobe, Y. Organometallics 2005, 24, 6260. (e) Misumi, Y.; Seino, H.; Mizobe, Y. J. Organomet. Chem. 2006, 691, 3157. (f) Saito, A.; Seino, H.; Kajitani, H.; Takagi, F.; Yashiro, A.; Ohnishi, T.; Mizobe, Y. J. Organomet. Chem. 2006, 691, 5746.
- (a) Bullock, R. M.; Voges, M. H. J. Am. Chem. Soc. 2000, 122, 12594. (b) Magee, M. P.; Norton, J. R. J. Am. Chem. Soc. 2001, 123, 1778. (c) Bullock, R. M. Chem.-Eur. J. 2004, 10, 2366. (d) Guan, H.; Iimura, M.; Magee, M. P.; Norton, J. R.; Zhu, G. J. Am. Chem. Soc. 2005, 127, 7805. (e) Namorado, S.; Antunes, M. A.; Veiros, L. F.; Ascenso, J. R.; Duarte, M. T.; Martins, A. M. Organometallics 2008, 27, 4589.
- (9) Addition of MeCN also retarded the catalysis by 5.
- (10) (a) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana, M. J. Am. Chem. Soc. 2001, 123, 1090. (b) Åberg, J. B.; Samec, J. S. M.; Bäckvall, J.-E. Chem. Commun. 2006, 2771. (c) Shirai, S.; Nara, H.; Kayaki, Y.; Ikariya, T. Organometallics 2009, 28, 802.
- (11) (a) Ng Cheong Chan, Y.; Meyer, D.; Osborn, J. A. J. Chem. Soc., Chem. Commun. 1990, 869. (b) Ng Cheong Chan, Y.; Osborn, J. A. J. Am. Chem. Soc. 1990, 112, 9400. (c) Gross, T.; Seayad, A. M.; Ahmad, M.; Beller, M. Org. Lett. 2002, 4, 2055.
- (12) (a) Shima, S.; Thauer, R. K. Chem. Rec. 2007, 7, 37. (b) Shima, S.; Pilak, O.; Vogt, S.; Schick, M.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Ermler, U. Science 2008, 321, 572. (c) Hiromoto, T.; Ataka, K.; Pilak, O.; Vogt, S.; Stagni, M. S.; Meyer-Klaucke, W.; Warkentin, E.; Thauer, R. K.; Shima, S.; Ermler, U. FEBS Lett. 2009, 583, 585.
- (13) (a) Royer, A. M.; Rauchfuss, T. B.; Gray, D. L. Organometallics 2009, 28, 3618. (b) Yang, X.; Hall, M. B. J. Am. Chem. Soc. 2009, 131, 10901.

JA905835U